Activation of NR2A-containing NMDA receptors is not obligatory for NMDA receptor-dependent long-term potentiation.
نویسندگان
چکیده
Activation of NMDA receptors (NMDARs) within the CNS represents a major signal for persistent alterations in glutamatergic signaling, such as long-term potentiation (LTP) and long-term depression. NMDARs are composed of a combination of NR1 and NR2 subunits, with distinct NR2 subunits imparting distinct characteristics on the receptor. One particular NR2 subunit, NR2A (NRepsilon1), has been proposed to play an integral role in LTP induction in the hippocampus and cortex. Here, we report studies investigating the role of NR2A in LTP induction in the dorsolateral bed nucleus of the stria terminalis (dlBNST). The putative NR2A-specific inhibitor NVP-AAM077 (AAM077) has been used previously to demonstrate the dependence of cortical and hippocampal LTP on NMDARs containing NR2A subunits. We report here the same sensitivity of LTP to pretreatment with AAM077 (0.4 microm) in the dlBNST. However, inconsistent with the conclusion that LTP in the dlBNST is NR2A dependent, we see intact LTP in the dlBNST of NR2A knock-out mice. Because we also see blockade of this dlBNST LTP in NR2A knock-out mice after pretreatment with AAM077, we conclude that the antagonist is targeting non-NR2A subunit-containing receptors. Using a variety of cultured cell types, we find that AAM077 (0.4 microm) can attenuate transmission of NR2B subunit-containing NMDARs when preapplied rather than coapplied with an agonist. Therefore, we conclude that NR2A is not obligatory for the induction of LTP in the dlBNST. Furthermore, our data demonstrate that care must be exercised in the interpretation of data generated with AAM077 when the compound is applied before an agonist.
منابع مشابه
P6: Metabotropic Glutamate Receptor-Dependent Role in the Formation of Long-Term Potentiation
Long-term potentiation (LTP) is a reflection of synaptic plasticity that induced by specific patterns of synaptic activity and has an important role in learning and memory. The first clue of the potential role of glutamate receptors in LTP was in 1991 with the observation that the mGluR agonists 1-amino-1, 3-cyclopentanedicarboxylic acid (ACPD), increased LTP. Studies have shown that ACPD induc...
متن کاملThe effect of morphine dependence on expression of hippocampal N-methyl-D-aspartate receptor subunits in male rats
Introduction: N-methyl-D-aspartate (NMDA) receptors play a pivotal role in the development of tolerance and physical dependence to opiates. Activation of NMDA receptors involves the induction of long term potentiation (LTP) in hippocampus. Our previous study suggested that chronic oral administration of morphine enhanced NMDA dependent LTP in the CA1 area of hippocampal slices of rats. The p...
متن کاملRole of NMDA receptors and voltage-dependent calcium channels in augmenting long-term potentiation of the CA1 area in morphine-dependent rats
The involvement of NMDA receptors and voltage-dependent calcium channels in augmentation of long-term potentiation (LTP) was investigated at the Schaffer collateral CA1 pyramidal cell synapses in hippocampal slices of morphine dependent rats, using primed-burst tetanic simulation. The amplitude of the population spike and its delay were measured as indices of increase in postsynaptic excitabi...
متن کاملAutophosphorylation-dependent targeting of calcium/ calmodulin-dependent protein kinase II by the NR2B subunit of the N-methyl- D-aspartate receptor.
Activation and Thr286 autophosphorylation of calcium/calmodulindependent kinase II (CaMKII) following Ca2+ influx via N-methyl-D-aspartate (NMDA)-type glutamate receptors is essential for hippocampal long term potentiation (LTP), a widely investigated cellular model of learning and memory. Here, we show that NR2B, but not NR2A or NR1, subunits of NMDA receptors are responsible for autophosphory...
متن کاملMembrane insertion of new AMPA receptors and LTP induced by glycine is prevented by blocking NR2A-containing NMDA receptors in the rat visual cortex in vitro.
N-methyl-D-aspartate receptors (NMDA-Rs) activation has been implicated in various forms of synaptic plasticity depending on the receptor subtypes involved. However, the contribution of NR2A and NR2B subunits in glycine-induced long-term potentiation (LTP) of miniature excitatory postsynaptic currents (mEPSCs) in layer II/III pyramidal neurons of the rat visual cortex remains unclear. The prese...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 25 37 شماره
صفحات -
تاریخ انتشار 2005